Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(14): 8135-8144, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34232995

RESUMO

Mobile genetic elements have been harnessed for gene transfer for a wide variety of applications including generation of stable cell lines, recombinant protein production, creation of transgenic animals, and engineering cell and gene therapy products. The piggyBac transposon family includes transposase or transposase-like proteins from a variety of species including insect, bat and human. Recently, human piggyBac transposable element derived 5 (PGBD5) protein was reported to be able to transpose piggyBac transposons in human cells raising possible safety concerns for piggyBac-mediated gene transfer applications. We evaluated three piggyBac-like proteins across species including piggyBac (insect), piggyBat (bat) and PGBD5 (human) for their ability to mobilize piggyBac transposons in human cells. We observed a lack of cross-species transposition activity. piggyBac and piggyBat activity was restricted to their cognate transposons. PGBD5 was unable to mobilize piggyBac transposons based on excision, colony count and plasmid rescue analysis, and it was unable to bind piggyBac terminal repeats. Within the piggyBac family, we observed a lack of cross-species activity and found that PGBD5 was unable to bind, excise or integrate piggyBac transposons in human cells. Transposition activity appears restricted within species within the piggyBac family of mobile genetic elements.


Assuntos
Elementos de DNA Transponíveis/genética , Sequências Repetitivas Dispersas/genética , Transposases/genética , Animais , Linhagem Celular , Vetores Genéticos/genética , Humanos , Mutagênese Insercional/genética , Plasmídeos/genética , Fatores de Transcrição/genética
2.
Genesis ; 58(5): e23357, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32078250

RESUMO

Cystinuria Type A is a relatively common genetic kidney disease occurring in 1 in 7,000 people worldwide that results from mutation of the cystine transporter rBAT encoded by Slc3a1. We used CRISPR/Cas9 technology to engineer cystinuria Type A mice via genome editing of the C57BL/6NHsd background. These mice are an improvement on currently available models as they are on a coisogenic genetic background and have a single defined mutation. In order to use albinism to track Cas9 activity, we co-injected gRNAs targeting Slc3a1 and tyrosinase (Tyr) with Cas9 expressing plasmid DNA into mouse embryos. Two different Slc3a1 mutational alleles were derived, with homozygous mice of both demonstrating elevated urinary cystine levels, cystine crystals, and bladder stones. We used whole genome sequencing to evaluate for potential off-target editing. No off-target indels were observed for the top 10 predicted off-targets for Slc3a1 or Tyr. Therefore, we used CRISPR/Cas9 to generate coisogenic albino cystinuria Type A mice that could be used for in vivo imaging, further study, or developing new treatments of cystinuria.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinúria/genética , Mutação , Animais , Sistemas CRISPR-Cas , Cisteína/urina , Cistinúria/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL
3.
BMC Nephrol ; 20(1): 227, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221135

RESUMO

BACKGROUND: Cystinuria is an inherited disorder of renal amino acid transport that causes recurrent nephrolithiasis and significant morbidity in humans. It has an incidence of 1 in 7000 worldwide making it one of the most common genetic disorders in man. We phenotypically characterized a mouse model of cystinuria type A resultant from knockout of Slc3a1. METHODS: Knockout of Slc3a1 at RNA and protein levels was evaluated using real-time quantitative PCR and immunofluorescence. Slc3a1 knockout mice were placed on normal or breeder chow diets and evaluated for cystine stone formation over time suing x-ray analysis, and the development of kidney injury by measuring injury biomarkers. Kidney injury was also evaluated via histologic analysis. Amino acid levels were measured in the blood of mice using high performance liquid chromatography. Liver glutathione levels were measured using a luminescent-based assay. RESULTS: We confirmed knockout of Slc3a1 at the RNA level, while Slc7a9 RNA representing the co-transporter was preserved. As expected, we observed bladder stone formation in Slc3a1-/- mice. Male Slc3a1-/- mice exhibited lower weights compared to Slc3a1+/+. Slc3a1-/- mice on a regular diet demonstrated elevated blood urea nitrogen (BUN) without elevation of serum creatinine. However, placing the knockout animals on a breeder chow diet, containing a higher cystine concentration, resulted in the development of elevation of both BUN and creatinine indicative of more severe chronic kidney disease. Histological examination revealed that these dietary effects resulted in worsened kidney tubular obstruction and interstitial inflammation as well as worsened bladder inflammation. Cystine is a precursor for the antioxidant molecule glutathione, so we evaluated glutathione levels in the livers of Slc3a1-/- mice. We found significantly lowered levels of both reduced and total glutathione in the knockout animals. CONCLUSIONS: Our results suggest that that diet can affect the development and progression of chronic kidney disease in an animal model of cystinuria, which may have important implications for patients with this disease. Additionally, reduced glutathione may predispose those with cystinuria to injury caused by oxidative stress. Word count: 327.


Assuntos
Nitrogênio da Ureia Sanguínea , Cistinúria/diagnóstico por imagem , Cistinúria/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/deficiência , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/deficiência , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Cistinúria/genética , Feminino , Masculino , Camundongos , Camundongos Knockout
4.
Circ Arrhythm Electrophysiol ; 8(4): 933-41, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26022185

RESUMO

BACKGROUND: Mutations of the cardiac voltage-gated sodium channel (SCN5A gene encoding voltage-gated sodium channel [NaV1.5]) cause congenital long-QT syndrome type 3 (LQT3). Most NaV1.5 mutations associated with LQT3 promote a mode of sodium channel gating in which some channels fail to inactivate, contributing to increased late sodium current (INaL), which is directly responsible for delayed repolarization and prolongation of the QT interval. LQT3 patients have highest risk of arrhythmia during sleep or during periods of slow heart rate. During exercise (high heart rate), there is elevated steady-state intracellular free calcium (Ca(2+)) concentration. We hypothesized that higher levels of intracellular Ca(2+) may lower arrhythmia risk in LQT3 subjects through effects on INaL. METHODS AND RESULTS: We tested this idea by examining the effects of varying intracellular Ca(2+) concentrations on the level of INaL in cells expressing a typical LQT3 mutation, delKPQ, and another SCN5A mutation, R225P. We found that elevated intracellular Ca(2+) concentration significantly reduced INaL conducted by mutant channels but not wild-type channels. This attenuation of INaL in delKPQ expressing cells by Ca(2+) was not affected by the CaM kinase II inhibitor KN-93 but was partially attenuated by truncating the C-terminus of the channel. CONCLUSIONS: We conclude that intracellular Ca(2+) contributes to the regulation of INaL conducted by NaV1.5 mutants and propose that, during excitation-contraction coupling, elevated intracellular Ca(2+) suppresses mutant channel INaL and protects cells from delayed repolarization. These findings offer a plausible explanation for the lower arrhythmia risk in LQT3 subjects during fast heart rates.


Assuntos
Arritmias Cardíacas/genética , Cálcio/metabolismo , DNA/genética , Mutação , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Animais , Arritmias Cardíacas/metabolismo , Células Cultivadas , Análise Mutacional de DNA , Modelos Animais de Doenças , Humanos , Ativação do Canal Iônico , Camundongos , Miócitos Cardíacos/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp
5.
Heart Rhythm ; 11(8): 1446-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24815523

RESUMO

BACKGROUND: Mutations in SCN5A, which encodes the cardiac sodium channel NaV1.5, typically cause ventricular arrhythmia or conduction slowing. Recently, SCN5A mutations have been associated with heart failure combined with variable atrial and ventricular arrhythmia. OBJECTIVE: The purpose of this study was to determine the clinical, genetic, and functional features of an amiodarone-responsive multifocal ventricular ectopy-related cardiomyopathy associated with a novel mutation in a NaV1.5 voltage sensor domain. METHODS: A novel, de novo SCN5A mutation (NaV1.5-R225P) was identified in a boy with prenatal arrhythmia and impaired cardiac contractility followed by postnatal multifocal ventricular ectopy suppressible by amiodarone. We investigated the functional consequences of NaV1.5-R225P expressed heterologously in tsA201 cells. RESULTS: Mutant channels exhibited significant abnormalities in both activation and inactivation leading to large, hyperpolarized window and ramp currents that predict aberrant sodium influx at potentials near the cardiomyocyte resting membrane potential. Mutant channels also exhibited significantly increased persistent (late) sodium current. This profile of channel dysfunction shares features with other SCN5A voltage sensor mutations associated with cardiomyopathy and overlapped that of congenital long QT syndrome. Amiodarone stabilized fast inactivation, suppressed persistent sodium current, and caused frequency-dependent inhibition of channel availability. CONCLUSION: We determined the functional consequences and pharmacologic responses of a novel SCN5A mutation associated with an arrhythmia-associated cardiomyopathy. Comparisons with other cardiomyopathy-associated NaV1.5 voltage sensor mutations revealed a pattern of abnormal voltage dependence of activation as a shared biophysical mechanism of the syndrome.


Assuntos
Amiodarona/uso terapêutico , Cardiomiopatias/etiologia , DNA/genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Complexos Ventriculares Prematuros/genética , Antiarrítmicos/uso terapêutico , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Análise Mutacional de DNA , Eletrocardiografia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Técnicas de Patch-Clamp , Linhagem , Complexos Ventriculares Prematuros/complicações , Complexos Ventriculares Prematuros/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...